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ON THE STATE OF STRESS NEAR CURVILINEAR HOLES IN SHELLS

G. N. Savin and A. N. Guz'

ABSTRACT

The investigation of stress concentrations near holes
in shells is reduced to the solution of boundary value
problems in which the variables are not separated either
in the solving equations or in the boundary conditions
(ref. 1). An exception to this is the spherical shell with
a circular hole (ref. 2) and a cylindrical shell with a
small circular hole (ref. 3). As a result of this situa-
tion it is not possible to obtain an accurate solution of
the problem for other hole shapes.

The present work proposes an approximate method of
investigating the state of stress in shells near curvi-
linear holes of arbitrary shape based on the method of
"perturbed boundary form" (ref. 4). For certain specific
hole shapes this method is considered in reference 5. This
method was applied by S. G. Lekhnitskiy (ref. 6) in the
case of a two-dimensional problem of elasticity involving
an anistropic medium. By applying the proposed method we
obtain a sequence of boundary value problems for a circular
hole.

In the case of a spherical shell with large holes and
in case of cylindrical holes weakened with small holes, we
are led to problems in which the variables are separable
when holes are of arbitrary shape but do not contain angu-
lar points.

The state of stress in a shell weakened by a hole is represented as a f96*
sum (ref. l):1 of the state of stress (Tno,...,QsO) in the continuous shell

which has not been weakened by the hole using the same boundary conditions and
an additional state of stress involving the perturbatiomns (Tn,...,QS) produced

*Numbers given in margin indicate pagination in original foreign text.

lThis breakdown of the state of stress is possible because the problem is
linear.



by the presence of the considered hole. The initial state of stress (Tno,...,
QSO) is called the basic state and is assumed to be known.
The problem is to find the additional state of stress (Tn,...,QS).

Experimental investigations (ref. 1) show that the perturbations near the
hole with a contour devoid of angular points have a local nature and are at-
tenuated very rapidly at distances away from the hole. To determine the com-
ponents (Tn,...,QS) we can apply the theory of the state of stress with a

large variability index. In this case the solution of the formulated problem
is reduced (ref. 1) to the integration of the differential equation

VEVID — %2V, 20 = 0

. 2= 12 (1 — v\ (1.1)
O = w -} ing, n=1_/_éh2 v, %:ro(_(_m__"_))

with the corresponding boundary conditions., Here Ty is a real quantity which

characterizes the dimensions of the hole. Equation (1.1) is represented in
dimensionless coordinates with respect to rye

Let us consider the plane of variables associated with the surface of _[21
the shell. TFigure 1 shows the following: x,y--the orthogonal system of co-
ordinates; r,8--polar system of coordinates; I'--the contour of the hole in the
plane of the variables associated with the surface of the shell; n--the unit
vector of the normal to contour; V--the angle between the normal and radial di-
rection (fig. 1). The solution of equation (1.1) must satisfy the corresponding
boundary conditions on the contour I' and must satisfy certain conditions at
infinity (ref. 1).

2. Let us assume that the contour I has a shape such that the function

=), o) =Ct+¢(5)
. , (2.1)
(z =rei% § = pa'V, g<&1)

produces a conformal transformation of the infinite plane with a circular hole
of unit radius into an infinite plane with a hole bounded by the contour I.
The function £({) depends on the form of ', € << 1, and the roots of the equa-
tion

1+e/(5) =0

must lie in the plane [ inside the circle of unit radius. With these limita-
tions the function w({) (2.1) produces a conformal transformation of the region
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Figure 1

external to the unit circle on the region external to the contour I' (fig. 1).
In order that in each of the subsequent approximations we have a boundary prob-
lem with separable variables, it is necessary that the solution of equation
(1.1) be representable in the form

D (r, 0) = r?.—?—.‘o Ji (1) cos k0 4 gi (r) sin &D

—

cos 7 (efp) Ro 7 (L)

(2.2)
The values r, 8, ¥ on the contour I" are equal when p = 1
r=V@+elf/ Q-+ 701+ Q70
sin 7 - (e/p) Im 7 () o — PP OF (2.3)

0 = arctg pPlo @) 2le (@) P

We represent the solution of equation (1.1) and the components of the
state of stress and deformation on the contour I' as a series of the parameter g

CD(r, 6) = EO ej(])]-(r, e) (2,l|.)
T-n ,I‘ - E Ean(j)’ Tu ,I‘ = E ejTa(j)v Sm ,I‘ = 2 eans(j)
=0 =0 i=0
X . : o . s o0 .
G’ﬂ-II‘ = 2 BJGn(-J)y Gs |I‘ = 2 {-‘,JG,(]), Hns ll‘ = 2 ej}Im(J)
j=0 i=0 j=o0 (2-5)
< Line () b ow - dw\ ()
° _ ine _ j j
Qﬂlp—jgoaQn wlr—E e]wj, -%F::_—Ze’(m-)

i=0

it s
u, lp = 2 sJun(J')’
=0

With +the solution in form (2.2), we can use known equations to find
the stress and strain components in the polar system of coordinates.

j=0

o0 .
U lp = 3 iy,

j=0

/98

To de-~

termine the corresponding components in the coordinate system p, vy, obtained
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from (2.1) whenl p = 1, we use the corresponding transformation equations (ref.
1) for the stress and strain components when transforming from one system of
coordinates to another (fig. 1). The values of the quantities r, 6 and ¥ from
(2.3) should be substituted into the expressions which are obtained. Sub-
stituting (2.4) into (1.1) and referring initially to the polar system of co-
ordinates, we obtain an infinite system of equations which has the following

form the j-th approximation

VEVAD;(r, 6) — #eVRD;(r, 0) =0 (=0,12, ..) (2.6)

In accordance with (2.2), the solution of (2.6) may be written in the form

D;(r, 6) = go Jii (1) cos kB - gy; (r) sin kO (2.7)

Relationships (2.3) are also expanded in series of €, while the stress
and strain components at the contour I' are determined by the method specified
above. For the j-th approximation we obtain

. . i1 . . ,
Tn(J) =Trm lo=1 + 2 [ LI(J—m)Tr(m) + Lz(J—m) (Te(m) . Tr(m)) + La(:'—m) Sro(m) ] IP=1
m=0
, ; =1 , )
T‘(J) __=T0(7) lp=1 + E [Ll(i-m)To(m) -+ L2(J—m) (Tr(m) _ To(m)) _La(J-m)Sro(m)] IP=1
m=0

. . - . .
Sne? =8 oy + 3 [( L™ 2L, t-m) g™ _é_ L™ (1 m_p tm) )]

. p=1
. . ! , .
Gn(J) =Gr(1) lo=1 - 2 [LI(J—m)Gr(m) +L2(J—m) (Go(m)_Gr(m)) _I_La(l—m)Hro(m)”p:l
m=g
. . i=1 . . .
G.(J) — Gom lp=1 + 2 [Ll("”"Gg("‘) + Lz(J-m) (Gr(m) _ Go(m)) _La(-7—""l)f1r0(77'l)]|p=1
m=0

Hyy "= Hyo? o +

i1
j-m j—m m 1 j-m m m
4 2 [(Ll(J )__ZLB(J )) Hro( )+ _2__L3(J )(GO( ) Gr( )]) ,P=1
m==0
. D[ 1—v & 1 (2.8)
D =1 j-m
- 2 L4(J )BG O, (P, T) IP=1
m=0

i—1 .
w; = Re (P, M) s + 2 L™ Ro O (0 1) o1

lThe coordinate line p = 1 in view of (2.1) is the contour of the hole.



dw\(9) 1 0
()" = 75 3 Re @3 (0 ) loms +

el

(j=m) a (G-my 1 9
-+ — o Z[ + L 'F';a—] Re @y (P, 1) o=

m=0

_ , -1 ‘
u P = a9+ 20 (L™ a™ - L™ ™) |y
m=

. , =1 , :
us(z) — v(J) lp=1 + 20 [LS(J m)v(m) __LG(J m)u(m)] |p=1
m==

A1l of the quantities with indices j and m which are in the right /99
sides of (2.8) have the following form
m{ 141 o 1
7, ™= nro? (p’ a‘r’+ [ 0p) Im @r (p, 1), To(m) nr ’ap Im @y, (p, 7)
m) _ 1 o Im®@, (¢
Sre = ~ nro 9p o7 P
G™ = — [ v)02+ sz]ReG) ® 7 (2.9)
m D i
@™ = — Z[VP— (1 —v) 55 Re O (o 1)
(m) 1—v 02 Re®@_ (p, 7
Hro =-—D o 390’)’ o
The displacements u(m) and v(m) are obtained by integrating the systems of
equations
ul™ Re®, (p, 7) 1 a2
= — o+ g, |V (L V) g | Tn O (01 )
1 o™ | um Re®,, (p, 7) 1
L —— = D s [+ ) 5 — WV Im O (o, 1) (2.10)
1 aulm™ g(ﬂ)= 2 Re®,(p, 1) ,14v a8 Im@,(p, 7)
o o1 T Pa\ T Tn Dinrodp 8t~ o

Equations (2.8) also contain six differential operators Lk(j‘m) (x =1, 2,
«..,6), whose order is indicated by the superscript. We write in expanded form

the operators (j—m), which will be necessary in solving the formulated prob-
lem for the zero, first and second approximation

w_ O+ @ 2 | (HO—T® [O+T® )2
LY = %0 ap-}—( o COST— )2p ( )Sm')’)g,;r LY=0
L@ = & @+t QP o + L@+ @) o

8p2 ap? p?



(f @ — f(C) cos 7 — f(€) @ gn 7) apa; o
+iwm+F@hm%—wm—ﬂmNmmQ_Jd@—umra+
4ip? aY 8p® dp
4. 2if @O FE@) — i [2@Q) + (D) cos 2y — [A (1) — FE(T)} sin 2y &2
8ip? oy?
L 7 TE —Ef (OF + 268 (L0 —E, ") — T
Mm=—TU@—4@W—W@ ymrua%g NG —F@]
L = 31/ @ =7 @)+ LOZVE
L — c=f=(c>—§w<c)+§th @) — 72 (@) +,[f (C)——f’ © 0~ g/a;)] <
2i82g ity (2. ll)
GO+ ® o | (1o —F @) (s 4—f(§
[ % —%+% 3 cos Y — 1)+ %my)J

—[(Lrm— f'(C)+f’(§)0) ” L

w_[rwd 1 u)ii]z
L‘ —[Ll +2L3 p o v 2 Y apd'rp

p

+ i aorL " (Vz_zg—;)]
L = [( Lo % Lz(z)) (% + % L@ ; aay] V2

1—v 32 +2/ QO F @43/ & _/O+7 Q2 ro
+=] ; i - 2

[ a7 2
O @ __or @] 0 1 170 @  f() + &) 5 (1) 92
ol —2L )] dparp ' 2 [5? Ls L ] vi— a—pz)}
LY =L, L& = oy Ls("'» L™ =1, __ % L@, L = % L®

By using relationships (2.3) we expand the right sides of the boundary/100
conditions on the contour I' in series of €. The function & (p, v) in (2.8)-

(2.10) should be interpreted as the solution of equation (2.6) in the m-th
approximation, in which r is replaced by p and 8 is replaced by y. In the
j-th approximation only the function @j(p, v¥) is unknown while the functions

n(P, ¥) (m < j) are functions known from the preceding approximation. Intro-

ducing the expansions of the corresponding components from (2.8) into the con-
sidered boundary conditions, we obtain a system of equations for determining
the coefficients in functions fkj(r) and gkj(r) from (2.7).

We can see from (2.8) and (2.9) that in each of the successive approxima-
tions (for each j) the problems are formally reduced to problems for a circu-
lar hole in the plane {. Thus the solution of the problem for the hole of ar-
bitrary shape is reduced to a solution of a series of boundary value problems

for a circular hole.

6



The expanded form f({) in (2.1) for different holes is taken from the
function w({) (refs. 6 and 7) which gives a conformal transformation of the
region external to the unit circle on the region external to the hole of con-
sidered shape.

The value of any quantity, for example TS* ', obtained in the n-th approxi-

mation will represent the following quantity

n n j—1
. . G N
Tomlp="Telp+ ) €78 | 43 3 & (LI T80 +
j=0 Pl j—om=o

(2.12)
-+ LT (@ — T — L§ S190)
p=1
For a spherical shell R.' = Ry' = R,equation (2.6) will be /101
4 P —_—
V2v2D;(r, 0) — ix2V2D;(r, 0) =0 (% = roV12(1 — v?) | R%1?) (3.1)

The solution of equation (3.1) which satisfies the conditions at infinity
(ref. 1) will have the form

@©; (r, 0) = iBjgln r + (Cjo -+ iDjo) H' (ru V—="0) + >} [(As + iBy) r* +

k=-1

+(Cjk —l— iDj]‘-) Hk(l)(rxl’ "“l)]ﬂ)‘ (3.2)

sin k0

(]l',,“) (rn V — &) — hergnr + ieiypnr)

Here Ajk’ Bjk: Cjk and Djk are constants of the Hankel function of the

first kind and of the k-th order (ref. 8). Solution in the form (3.2) makes it
possible to obtain a solution for a problem involving a spherical shell weakened
by holes of arbitrary shapes whose contours do not have angular points.

As an illustration we shall present the value of the stress concentration
coefficient k for a hole of near elliptical size for various values a/b in a
spherical shell loaded with a uniform external pressure (ref. 5). We assume
that the basic state of stress is momentless; it is assumed that the hole is
closed with a cover which transmits only the transverse force. Assuming that
for the shell R = 250 cm, h = 0.3 ecm, ry = 1/2(at+b) = 10.5 cm, v = 0.3; we

obtain the following value for the coefficient k

lsad

T, —b —b
]g=_P-0}Tp=4.29+2+b12.7700327, g = (3.3)

7



The values represented in table 1 have turned out to be equal.

a/b=1.0 1.1 1.2 1.3 1.4 1.5

kl,_p=%29 4.91 5.46  5.95 6.46 6.85
kly—ym=4.29 3.63 3.13 2.63 2.12 1.74

L., Tet us consider the case of a circular cylindrical shell.

If in place of ¢ we introduce ¢ and & unchanged ¢ = w + inyp, equation N

(2.6) for the cylindrical shell will take on the form

F; ro — 2'/0
2D; (r, 6) + 8iB? 25 ®;(r, 0) = 0, B=Vmﬂ1—2v—) (k1)

In expressions (2.9) and (2.10) the sign in front of IQO(p, v) should be

reversed. Here the ox-axis coincides with the direction of the generatrix,
while the oy-axis coincides with the directrix, This change in designations
is made so that they coincide with those assumed in references 3 and 9.
Equation (4.1) cannot be represented in the form (2.7) (ref. 3), however, for

small holes (with an accuracy up to 62) the unknown solution may be represented
in the form

sin k0

O;(r, 8) = 3 i () 5020 4 e z gus (r) S50 (4.2)
k=

Using the results of reference 9, we write the solution of (L4.1) in the

form (L4.2) for a biaxial state of stress when the hole has two axes of 102
symmetry coinciding in direction with the generatrix and the directrix

(€)]
Im @; (r, 0) = = 4P (lnr + ) + 222 (4,0 4 B27) 4

o0

2 (k_ ‘]) + ) co;ke 1 _:_‘_ B2 {2B0(i) (nr+ ,r') —_

kwd, 8, ... ZFI‘"

——Z—(ZAO(”~+-42(”)’2+[-——(A R RUNE 4 B, A ]co $20 -+

o E, () F, )
+ 3 (7,’:72_{. :‘ )noskﬂ} v “L:/lf (y - Euler's constant) (4.3) “
Koy, G, ...

Ro®;(r,8) = - {— 2D, (lnr + v) + (24,7 + AJ’") P (nr +7) —

— 7 Ga? + 4.9 1+ [(4 + 47 P (lnr 7)) — 42 5y HP+
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+ L K,""] c0s 20+ oo A2 r? cos 40 +

co . D 4D .G K, .
k—4& () By, — Ay k k
+k_420 (24:-"-** Ax=a 4rk-e + r*-3 + ) 008 keJL
Assuming that the basic state of stress is momentless and equal to
TXO = ph, TyO = gh, Sxyo = th, we write the components of the basic state of

stress in the cylindrical shell, for accuracy up to the term 62, in the form

T’ =Y2(p+q)h+/a(p—gq) h cos 2y + thsin2y + Yo e[/ (€) —f (§)] X
X 2 (p—q) R (5 — ) ith (£ + £ — Y e [f (©) — / (©)] X
—{Ma(p— ) (@ @) — B @) — 62/ ©) + 87 (B)) vh
T'=/a(p+ q)h—/» (p—g) hcos 2y — th sin 2y — *fze [/ (§) —F (©)] X
X (Yo (p— @) h (G — T —ith @+ T — Vs e? [/ (©) — T ()] ¥ (4.1
X (e (p=a) b @ F @) — T (0) — i (L7 @) + L (L)1 thy
Sns® = — 13 (p— q) hsin 2y + theos 2y + Yo [f (§) — F (O] [Yai (p — ¢) ¥
X h (L2 4+ T3 + th (L2 — )] — a8 [/ (5) — F ()] ¥
X (g —p R @ T @)+ TF (1) + iR (2] @) — 7 @)

As an example we shall consider the stress concentration near a square
hole with rounded corners when the shell is extended along the generatrix. 1In
this case £({) in (2.1) should be taken in the form £(C) = {72, € = £1/9, and
it should be substituted into the differential operators (2.11).

Let us assume that the hole is free. Then the boundary conditions /103
will be -

Ta ll":—To"' S"‘II‘:—S"SO’ G"II‘=O’ n lp=0 (l|-5)

where Tno and Snso are determined from (4.4) with q = v = O and £({) = €_3-

The zero approximation coincides with the solution for a circular hole
(ref. 3), according to which TS(O) has the formt

lHere we take into account the inaccuracy (ref. 10) permitted in reference 3.

9



T49 = ph[1 — 2 cos 2y — 1/2nf? cos 2y]

(L.6)

We shall include the coefficient in front of €J from T,® (4.4) in Ts(j).

From the boundary conditions (4.5) taking into account (L4.L4), (L4.3), (2.11), we

determine the constants contained in (4.3) when j = 1, 2

A = —,phardn, B = —A;®, AW = —A0, BN = 4,0
A = 14,0, Be® == —A,®
B = —3ephatrn, E M = 3B, Fy® = —2B®, E == By,
P = By,  Ag® = —3/,4,,

A = A0, By® = —24,0, A =140, B = —3/,4,"
A = — 4,0 Bg® =T[4,
Ay® = A)®,  By® = —18B)1), Ey® = 2B, F® = —T[,B®
E® = 2B, F@=—2BY, B® = —2B®
Ed® == 3B, F® = —1,B,  Ey® = 4By, Fy® = —8/,B®

When j = 1, 2 the other constants in (4.3) are equal to zero.

account (2.11) and (4.,7) we find Ts(l) and TS(E) from (4.3)

T = ph[—2 cos 2y + 6 cos 4y — 6 cos By —
— np21/2(1 — 3 cos 2y + 3 cos Gy) ]
T = ph][=2 cos 2y — G cos Gy =~ 18 cos 8y =}- 18 cos 10y -
+ /2 (4 cos 2y — 12 cos 4y — 18 cos 6y — 18 cos 10y) ]

(L.7)

Taking into

(4.8)

According to (2.13) the value of Ts*ll‘ in the second approximation has

the form

Ta @ [1‘ —_ Ta(O) + BTE(I) 4+ 82T3(2)

(4.9)

If € = 1/9, then the diagonal of the square will coincide with the direc-
tion of the generatrix; when € = —1/9 the diagonal of the square is at an angle

of 1/2 x with respect to the generatrix.

We present the values k = T,¥/ph on I when y = 1/2 x for a plate and a

shell obtained in the zero, first and second approximations, when

10




Y= l/zn’ rO/VE]:;'—= 0'51 & = 1/9

Approximation Zero First Second Precise
kEy =1/2 5{; = +3.00 +4.g5 +5.09 +5.38  for a plate
k(v = 1/2 %) = +3.16 +5.37 - for a shell

The second approximation for the plate differs from the solution pre- {loh
sented in reference 6 by 6 percent. In the case of the shell we may assume for
practical purposes that the convergence rate is satisfactory, since the first
approximation is 52 percent greater than the zero approximation, while the sec-
ond approximation is 14 percent greater than the first approximation.

We present the values of k when v = 0 and v = 1/2 & for different values
of ry/VRh with v = 0.3.

Plate Shell
ro] Vkk= 0.0 0.2 0.4 0.6
kl . —1.31 —1.34  —1.53 —1.81
=0 _0.87 —0.88 —1.93 —1.00
_ _ +5.09 +4-5.12  -5.28 --5.52
kl(v="/am)= 1§ g9 42.00 42,06 2.14

Here the upper values are for € = 1/9, while the lower values are for
€ = -1/9. We can see that the stress concentration coefficient depends on the
curvature of the shell and that this relationship is particularly pronounced
when ¥ = 0. Thus, within the considered limits of ro//ﬁﬁ, the maximum increase

in the stress concentration coefficient is greater than that for a case of a
plate by a factor of 1.37 (i.e., when rO/JRh = 0). On the other hand, the in-

crease in the maximum stress concentration coefficient is small (approximately
8 percent).

Figures 2 and 3 show the distribution of stresses TS* on the contour of
the hole when v = 0.3 and r,//RH = 0.6 for a shell and a plate. Let us consider

briefly the case when the cylindrical shell is under tension and is weakened by
a nonreinforced elliptical hole.

This problem is considered in detail in reference 11. Here we present
only the value of TS*IP for v = 0.3, taking into account the second approxi-
mation

tlp ph 1——200327—%2 @0527——00547)4—2 {X
[ ok (4.10)

X (cos 4y — 0.5 cos 2y — 0.5 cos 67)] 0.65 (a4—;}l:) ph [cos 27+

11



a-—Db a—b\2
+ $5 (1 + cos ) + (m) (3 cos 2y - cos 67)]

It follows from (L4.10) that the gqualitative difference in the distribution
of forces in the shell compared with the plate will take place when vy = 0., Thus

in this case for a plate we have TS*IF = -ph, independent of a/b, while /105
in the shell

e v (a4 by o—b LN
7o =P {14 0.5 5 [1+2a+b+4(§Tz;)]r . (k.11)

This dependence will be substantial.

To estimate the rate of convergence of the obtained solution (4.10), we
present the values of k = T ,*/ph for y = 1/2 x, a/b = 1.4, 1/2(a + b)//Fa = 0.5,
v = 0.3 in the zero, first and second approximation.

Figure 4 shows the distribution of forces TS*IF for a shell and a plate
when the values of the parameters are as specified above. The maximum increase
in the concentration coefficient in this case is attained when v = 0 and is

equal to 23 percent, compared with its value for the plate. On the other hand,
the increase in the maximum concentration coefficient is insignificant (5 per-

cent).
Approximation  Zero First Second Precise
k(y = 1/2 x) = +3.00 +2.32 +2.44 2,43 for a plate
k(y = 1/2 %) = +3.16 +2.Lk +2.57 - for a shell

._.__=0
Tih .6
——- Shell
— Plsate
T
Figure 3
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Figure k4

From the numerical examples which we have presented it follows that in the

case of tension (compression) of a cylindrical shell along the generatrix, when
the latter is weakened by nonsupported holes of arbitrary form, the maximum
stress concentration coefficient in the shell differs little from the maximum
stress concentration coefficient in a plate, when the loading is the same. To
determine the maximum stress concentration coefficient during the tension of a
cylindrical shell, weakened by a small unsupported hole of arbitrary shape, we
can use the values of the stress concentration coefficients for the correspond-
ing holes in a plate with an accuracy of 5 to 8 percent.
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